If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6=96
We move all terms to the left:
5x^2+6-(96)=0
We add all the numbers together, and all the variables
5x^2-90=0
a = 5; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·5·(-90)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*5}=\frac{0-30\sqrt{2}}{10} =-\frac{30\sqrt{2}}{10} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*5}=\frac{0+30\sqrt{2}}{10} =\frac{30\sqrt{2}}{10} =3\sqrt{2} $
| 1/2(2x-8)=2/3(x+7) | | 2x^2–11x–21=0 | | -2x+11=-4x+9 | | y/3-12=6 | | s-10=3s | | 63=3y+12 | | 2b+1=10 | | 0.6-2x=5 | | n^2-n465=0 | | 6(2d-1+13=19 | | 10=5(s-4) | | 0.2x-3=1.5-2.3 | | 12=15(z-(1/5)) | | s=5+2s | | 6x+94=8x+14 | | 0.4n-16=0.6n-14 | | x/5=2.5^x | | 11x-125=35 | | 3x+36=5x+4 | | 9=7y/2 | | -s+6=-10 | | 4+3(x+)=10 | | 6x-11=9x-5 | | y=2.50+30 | | 2.5x+3x+200+175=500 | | 2.5x+3x+200+175=50 | | 9=(7y/2) | | 8+5w=7w | | 0.75(3x-5)=0.5(2x+4) | | 2.5x-200=3x-175 | | 16.202+p=-9.6 | | 1x+9=10-5x |